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Abstract. Substrates that compute using vibration rather than electric-
ity offer the potential of creating and deploying computers into electronics-
denying environments. Another advantage of these materials is that some
of them can compute multiple functions in the same place and at the same
time, providing computational results at different frequencies. These so-
called polycomputational materials may eventually compete with more
traditional computers in terms of computational density because there is
no currently known upper bound on how many functions can be simulta-
neously computed by a vibrational substrate. However, three challenges
remain for polycomputational materials: how to ensure that the differ-
ent functions are computed independently; developing evolutionary algo-
rithms that allow for embedding increasingly more functions into these
materials in silico; and validating the evolved in silico materials as phys-
ical materials. Here we report progress on all three of these issues.

Keywords: Granular Metamaterials · Mechanical Computing ·
Polycomputing

1 Introduction

The demand for faster and more efficient computation continues. Since the
1950 s, silicon-based computers have dominated. However, these conventional
systems fail in harsh environments, rely on electricity, and degrade into elec-
tronic waste [8,19]. Unconventional computers are those which explore novel
substrates and bit abstractions [5,7,9,15,16,20]. They offer alternatives that are
more resilient in extreme conditions, operate without traditional electricity, or
produce less electronic waste [4,7,11,21]. Despite these potential advantages,
unconventional computers currently fall far short of the computational ability
and density of digital computers. However exponential growth patterns such as
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Fig. 1. CGMM inputs and outputs. This figure shows an overview of the system
inputs and outputs for a CGMM where gate g1 = AND and g2 = XOR. A) This panel
shows the possible system inputs for the AND gate operating at ω1Hz and the XOR
gate operating at ω2Hz. In this example, the ‘11’ input is passed into the AND gate,
and the ‘10’ input is passed to the XOR gate. B) The input signals are a combined
superposition of the individual input cases. C) The CGMM is supplied with the selected
input cases. In this cartoon, the input grains are marked in gray, while the output grain
is marked in black. D) The output signal in the time domain. E) We perform a fast
Fourier transformation on the time-domain oscillation of the output grain. We then
analyze the power at the driving frequencies where power above a given threshold
corresponds to an output value of ‘1’ and power below a given threshold corresponds
to an output value of ‘0’.

Moore’s Law are not sustainable indefinitely. Transistors are nearing their phys-
ical limits, which impedes further miniaturization [17]. The particular class of
unconventional computing material investigated herein, so-called polycomputa-
tional materials, can compute different logic gates at different frequencies [2,3].
Since there are infinite frequencies, in theory, such materials could have infinite
computational density. In practice, no upper bound on computational density
has been determined for these materials.

Polycomputational materials are designed using machine learning to engi-
neer the properties, such as stiffness or mass, of grains in granular metamateri-
als [10]. Such materials are referred to as computational granular metamaterials
(CGMMs) [1,12–14]. An overview of the inputs and outputs of a CGMM is dis-
played in Fig. 1. In addition to offering potentially unbounded computational
density, CGMMs offer several advantages over traditional computational archi-
tectures. Notably, they could provide more robust and energy-efficient compu-
tation, as they would not rely on electronic components or specific substrates.
These systems also have the potential to revolutionize future robotic systems,
enabling sensing, control, and actuation to be driven by vibrational computation.
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Fig. 2. Logical independence of a CGMM. A) Overview of a granular material
with superimposed AND gates g1 and g2 operating at ω1 and ω2 hertz respectively.
Bits are treated as the presence (1) or absence (0) of vibration at a given frequency. In
panel a), both input grains are vibrated at ω1Hz, representing 1,1 supplied to gate g1.
Neither is vibrated at ω2Hz, representing the simultaneous application of 0,0 to gate
g2. The output grain is observed to vibrate in response, correctly, at ω1Hz (1,1→1), but
not vibrate, correctly, at ω2Hz (0,0→0). B) For a given material, one can ask how many
of the 16 possible cases (each of the four input cases, at both frequencies) results in
the correct behavior of the output grain. Here, both the logic gates within the material
are AND. An ideal material is logically independent: the gate at one frequency acts
correctly regardless of which of the four input cases is being supplied to the other gate
at the other frequency.

As polycomputational granular materials are an emerging technology, we
have yet to explore many of their properties. One such unexplored yet important
behavior is the relative independence of gates embedded within a given substrate.
Here, independence refers to the ability of a logic gate to function autonomously,
regardless of the input received by other gates within the same substrate. Prior
studies have concentrated on the behavior of these materials across the input
scenarios where source grains receive identical logical inputs simultaneously (e.g.,
the gate operating at frequency ω1 receives the input case ‘10’, while the gate
operating at frequency ω2 also receives the input case ‘10’) [12–14]. Therefore,
it remains unknown if gates g1 and g2 in a given material exhibit any degree of
independence. That is to say, we do not have insight into how much the logical
input into g1 impacts the behavior of g2 and vice versa.

One might think a simple solution to achieving logically independent CGMMs
is to evolve for proper behavior at each of the 16 input case pairs (shown in
Fig. 2B). However, explicitly evolving a granular material for independence has
poor scalability: as logic gates n embedded into a material increases, the poten-
tial superpositions of frequencies expand exponentially with O(22n). Therefore,
in this work, we focus on the following questions: 1) Can we evolve logically
independent CGMMS, and 2) how do we do so in a scalable manner? To answer
these questions, we evolve CGMMs using a variety of methods. We find that
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it is possible to evolve independent CGMMs and we can do so using scalable
methods. This work presents the first CGMMs known to have this property and
therefore highlights the potential of CGMMs to serve as dependable and robust
computational systems.

In the following section, we describe our in silico model of granular materi-
als, and their physical environments, followed by an outline of our evolutionary
methods and conducted experiments. The Results section states our findings.
The Discussion Section enumerates the behaviors of the best-evolved materials
and their relative independence. The Hardware Implementation section presents
a minimal physical implementation of a granular logic gate. We conclude with
future directions for this work, including the transfer of our evolved designs
in situ.

2 Methods

We use multi-objective optimization to evolve the masses of grains in a gran-
ular material. Each material has two logic gates, gates g1 and g2 operating at
frequencies ω1 and ω2. For each material, either g1 = AND and g2 = AND, or
g1 = XOR and g2 = AND. To explore scalable methods of evolving independent
CGMMs, we test four methods of evaluating material fitness during evolution.
Specifically, in place of evaluating materials for correct behavior in each of the 16
combinations of input case pairs, we evaluate gate behavior on various subsets of
input case pairs for input1 at ω1 ∈ [‘00’, ‘01’, ‘10’, ‘11’] and input2 at ω2 ∈ [‘00’,
‘01’, ‘10’, ‘11’]. These differing input case pair subsets used during evolution are
referred to as evaluation methods. 30 independent evolutionary runs were col-
lected for each experiment. We use the Wilcoxon rank-sum test and Bonferroni
corrections for all statistical analyses with multiple pairwise comparisons.1

2.1 CGMM Definitions

In this work, a material consists of 49 3D grains arranged in a seven-by-seven
triangular lattice. They are placed within a simulation box featuring fixed bound-
aries along the x and y directions. Each grain shares the same diameter D =
10cm. Logical inputs are sinusoidal vibrations supplied to two fixed input grains,
and outputs are vibrations measured at a fixed output grain. The locations of
output and input grains are arbitrarily fixed as the grains marked in Fig. 2.
The logical input of True, or ‘1’, is encoded as a sinusoidal input of amplitude
A = 1 at driving frequency ωn. Conversely, the logical input of False, or ‘0’, is
encoded as a sinusoidal input of amplitude A = 0 at driving frequency ωn. To
quantify output signals, we perform the fast Fourier transformation to convert
output signals from the amplitude-time domain to the power-frequency domain.
For a granular material to function as a logic gate, the relative magnitude of the

1 The source code for the experiments in this paper is available here: https://github.
com/piperwelch/logical independence/.

https://github.com/piperwelch/logical_independence/
https://github.com/piperwelch/logical_independence/
https://github.com/piperwelch/logical_independence/
https://github.com/piperwelch/logical_independence/
https://github.com/piperwelch/logical_independence/
https://github.com/piperwelch/logical_independence/
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Fig. 3. Comparison of the distributed and simultaneous evaluation methods.
A) This panel shows the inputs and outputs for the distributed evaluation method, in
which the material is first supplied with the blue frequency, then the red frequency. B)
This panel shows the inputs and outputs for the simultaneous evaluation method, in
which the material is supplied with the red and blue frequencies simultaneously.

power at the driving frequency in each case must be consistent with the desired
behavior of the gate. For example, when computing AND, we expect a relatively
high power at the driving frequency when both input grains are supplied with
vibration. In this work, gate g1 is optimized to function at 15 Hz, while gate g2
is optimized to function at 20 Hz.

2.2 Definitions

Notation. Herein, we will refer to a given input case pair supplied to a material
as such: Fωn

x (ijn)Fωm
x (ijm), where ωn and ωm are the driving frequencies, ijn

and ijm are the logical inputs ∈ [‘11’, ‘01’, ‘10’, ‘00’] supplied in the x-direction
at ωn and ωm, respectively. For example, we represent the case when ‘11’ is
supplied at ω1 and ‘00’ is supplied at ω2 as Fω1

x (‘11’)Fω2
x (‘00’).

Independence. We define the independence of a material as the ability of its
embedded gates to function correctly regardless of the input cases applied to
other gates within the same material. The metric for quantifying independence
is defined as follows:

I =
15∑

i=1

Bi (1)

Here, Bi is 1 if behavior i is what we would expect in an ideal logical gate
(e.g. if we observe a ‘1’ where we expect it), and 0 otherwise. To determine
whether an observed output signal aligns with the expected output, we binarize
the material’s output signals using a power threshold. This threshold is calcu-
lated as the midpoint between the lowest power magnitude corresponding to
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an output of 1 and the highest power magnitude corresponding to an output
of 0. The independence I is a value ∈ [0, 15], where 15 represents a material
that behaves appropriately in each of the 15 input case pairs. The input case
Fω1

x (‘00’)Fω2
x (‘00’) is not considered as it is trivial.

2.3 Simulator

In this work, we use the open-source software LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator) [18] to model our granular materials.
Both normal and tangential grain interactions adhere to a Hookean contact
model. A Hookean model of contact also governs grain interactions with the
system boundaries. We use a time step of 0.001 and run our simulations for 2000
steps. All reported units are expressed in SI units.

2.4 Optimization

We use a (λ+μ) multi-objective evolutionary algorithm, where λ = 100 and μ =
200. The genome of each material is a 49-length array of floats, where each float
represents the mass of one grain within the material. Each value in a material’s
genome is randomly initialized on a uniform distribution ∈ [0.5 kg, 1.3 kg].

2.5 Fitness

Each material has a fitness associated with gate g1, and a fitness associated
with gate g2. In practical applications, logic gates are either functional or non-
functional; however, during evolution, we use a continuous fitness function to
enable evolution to follow a fitness gradient. The metric we use to quantify
logical AND behavior, or “ANDness” is:

ANDnessgn
=

f̂ ‘11’
ωn

(f̂ ‘10’
ωn

+ f̂ ‘01’
ωn

)/2
(2)

while the metric we use to quantify logical XOR behavior, or “XORness” is:

XORnessgn
=

(f̂ ‘01’
ωn

+ f̂ ‘10’
ωn

)/2

f̂ ‘11’
ωn

(3)

Here, f̂ ij
fn is the power at the driving frequency of the Fourier transform when

logical input ij is supplied to the material. These metrics are maximized when
the power for outputs that should be ‘1’ is high relative to outputs that should
be ‘0’. The ‘00’ input case is not included in these equations since it is trivial.
These metrics are subsequently referred to as GATEness.

Because power exists on a spectrum, while traditional logic gates operate in
a binary manner, we establish a threshold of power post-evolution to binarize
the behavior of our materials. Signals above this threshold are interpreted as
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‘1’, while those below are interpreted as ‘0’. To encourage comparable power
magnitudes for output signals from gates g1 and g2, we introduce a fitness term p.
Here, p is designed to introduce pressure for similar output power when materials
produce a ‘1’ output. It is defined as:

p =
1

(1 + |f̂f1 − f̂f2|)
(4)

The fitness of a material for ωn is then calculated as:

fitnessgn
= GATEnessgn

∗ p (5)

2.6 Evaluation Methods

The varying subsets of input case pairs used during evolution to assess the fitness
of g1 and g2 are subsequently enumerated.

Distributed Evaluation. The first evaluation method we test evaluates gate
fitness when input cases are supplied to a material in a distributed manner. In
this evaluation method, materials are evolved for correct logical behavior for
gates g1 and g2 when the inputs for g1 and g2 are supplied during different sim-
ulations. This means a material is simulated six times to construct fitnessg1 and
fitnessg2 . The input case pairs for distributed evaluation are represented visu-
ally in Fig. 3A. In closed form, fitnessg1 is constructed by examining the mate-
rial’s behavior when supplied with the Fω1

x (‘11’)Fω2
x (‘00’), Fω1

x (‘10’)Fω2
x (‘00’)

then Fω1
x (‘10’)Fω2

x (‘00’) input case pairs. Subsequently, fitnessg2 is constructed
by examining the material’s behavior when supplied with the Fω1

x (‘00’)Fω2
x (‘11’),

Fω1
x (‘00’)Fω2

x (‘10’) then Fω1
x (‘00’)Fω2

x (‘01’) input case pairs. The number of sim-
ulations this method requires scales as O(n) with the n the number of gates
embedded within a material.

Simultaneous Evaluation. The second evaluation method we test evaluates
gate fitness simultaneously. That is, under this evaluation method, materials are
evolved for correct logical behavior for gates g1 and g2 when the inputs for g1 and
g2 are supplied during the same simulation. This means a material is simulated
three times to construct fitnessg1 and fitnessg2 . The input case pairs for simul-
taneous evaluation are represented visually in Fig. 3B. In closed form, fitnessg1

and fitnessg2 are constructed by examining the material’s behavior when it is
supplied with the Fω1

x (‘11’)Fω2
x (‘11’), Fω1

x (‘10’)Fω2
x (‘10’) and Fω1

x (‘01’)Fω2
x (‘01’)

input case pairs. The number of simulations this method requires scales as O(1)
with the n the number of gates embedded within a material.

Input Case Varying Evaluation. The third evaluation method we test
evolves for correct behavior as evaluated using three randomly selected input
cases. That is, in this method of evaluation, granular materials are evolved for
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behavior at g1 and g2 when input cases for g1 and g2 are randomly selected
∈ [‘11’, ‘01’, ‘10’, ‘00’]. The input case pair Fω1

x (‘00’)Fω2
x (‘00’) and repeat selec-

tion of the same input case pair are excluded from consideration due to their
redundancy. Figure 2B visually displays the 15 possible input case pair choices.
A new set of three input case pairs is chosen for each generation.

Due to the shifting fitness function, this method employs several algorithmic
adaptations from the aforementioned multi-objective optimization. Two notable
changes have been implemented. First, the input case pairs needed to calculate
GATEness may not be present in the three randomly selected input case pairs.
Consequently, this method’s relevant power values at a given driving frequency
are amalgamated into a fitness metric for ω1 and ω2 as the product of three fitness
terms for ω1 and ω2, respectively. Specifically, if a given input case should result
in a ‘0’ output then the fitness term is 1

f̂ωn

, while if a given input case is that

should results in a ‘1’, then the fitness term is f̂ωn
1 . Similar to the GATEness

metrics, this method rewards high fitness for materials that minimize power for
any output that should be a ‘0’ output and maximize power for any output that
should be ‘1’. Another algorithmic adaptation required is that when a new set
of three input case pairs gets selected at each generation, all individuals in the
population must be re-evaluated by the latest fitness function. This is because
the chosen input case pairs directly influence the magnitude of fitness. Without
re-evaluation, there would be stagnation and evolutionary progress would not
proceed. The number of simulations this method requires scales as O(1) with
the n the number of gates embedded within a material.

Tri-Objective. The final evaluation method we test follows the same process as
the simultaneous method while introducing a third objective for independence
on a subset of three input case pairs. By adding an objective for independence in
a subset of input case pairs, we explicitly evolve for independence without having
to perform O(2n) operations for each material. To construct the independence
objective, we simulate material behavior in 3 randomly selected input case pairs.
To ensure we can create a binarizing threshold by averaging the power for the
lowest value of ‘1’ and the highest value of ‘0’, we enforce that at least one of
the selected input case pairs results in a logical output of ‘1’, and one results
in a logical output of ‘0’. At every generation, we select a new subset of input
cases on which to evaluate independence. The independence is then a value ∈
[0,3]. The number of simulations this method requires scales as O(1) with the n
the number of gates embedded within a material.

2.7 Survivor Selection

After all the materials are evaluated, those allowed to maintain in the population
are either selected based on the Pareto-front of fitnessg1 and fitnessg2 or, in
experiments using the tri-objective evaluation method, off of the Pareto-front of
fitnessg1 and fitnessg2 and independence. Survivor selection occurs by iteratively
selecting two random individuals from our population, and discarding one if it
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is Pareto-dominated. This process repeats until the population size reaches λ.
Each of the remaining materials is allowed to produce a mutated copy of itself
until the population size reaches (λ + μ).

2.8 Mutation

Our mutation operator acts on each child with a 10% chance of mutating the
mass of a given grain in the child’s genome. The mutation size is ∈ ± 0.0524 kg.
Grains are limited to a minimum mass of 0.262 kg and a maximum mass of 5 kg.
We repeat this process of creating, evaluating, and mutating materials until 100
generations have occurred.

3 Results

After evolution, we analyze each individual in the population at generation 100.
We retrieve the material with the highest independence I from the population.
This is repeated for all 30 evolutionary replicates. Table 1 shows the mean inde-
pendence of these 30 top-performing materials in each evaluation method.

Table 1. Comparison of our four evaluation methods and random. The mean
independence of materials evolved using our distributed, simultaneous, input case
varying, and tri-objective evaluation methods. Here, big-O refers to how the num-
ber of physics simulations scales with n the number of logic gates embedded within a
material.

Evaluation Method Gate 1 Gate 2 Mean Independence Big-O

Distributed AND AND 12.30 ± 1.77 O(n)

Simultaneous AND AND 12.60 ± 2.04 O(1)

Input Case Varying AND AND 10.80 ± 2.45 O(1)

Tri-Objective AND AND 12.86 ± 1.83 O(1)

Distributed XOR AND 14.70 ± 1.00 O(n)

Simultaneous XOR AND 14.03 ± 1.62 O(1)

Input Case Varying XOR AND 14.93 ± 0.35 O(1)

Tri-Objective XOR AND 14.46 ± 1.28 O(1)

To assess whether evolution produced materials with greater independence
than randomly generated ones, we created a population of 1000 random materials
and evaluated the fitness of each material. For all evaluation methods, evolved
materials had significantly higher independence than the randomly generated
ones (p < 0.05 for all comparisons).
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AND & AND. When the logic gates g1 and g2 embedded within a material are
logical AND, the tri-objective evaluation method produced the materials with
the highest mean independence. In this method, 11 of the 30 replicates produced
materials with perfect independence I = 15. The method that produced the
second highest mean independence in the simultaneous method, followed by
the distributed method. Respectively, using these methods, 10 and 6 replicates
produced materials with perfect independence I = 15. The worst-performing
evaluation method was the input case varying method. It resulted in materials
with the lowest mean independence and only 5 replicates produced materials
with perfect independence. Using the Mann-Whitney U test, we conclude that
the independence of materials from the input case varying evaluation method is
significantly less than material evolved using the other three methods (p < 0.05
for all comparisons). There is no significant difference between the distributed,
simultaneous, and tri-objective methods (p > 0.05 for all comparisons). Figure 4
shows the behavior of sample I = 15 materials from each of the evaluation
methods.

XOR & AND. When logic gate g1 is XOR and logic gate g2 is AND, the
input case varying evaluation method produced the materials with the highest
mean independence. Using this evaluation method, 29 of the 30 replicates pro-
duced materials with perfect I = 15 independence. The method that produced
the second highest population mean fitness is the distributed method, which
produced I = 15 materials in 27 of the 30 replicates. The tri-objective evalu-
ation method produced the third highest population independence and found
I = 15 materials in 25 of the 30 replicates. The worst-performing evaluation
method was the simultaneous one, which produced the lowest mean population
independence and found I = 15 materials in 22 of the 30 replicates. There is no
significant difference between the independence of materials evolved from any of
the methods.

4 Discussion

In this work, we have shown that it is possible to evolve entirely independent
computational granular materials without explicitly selecting for independence.
Our results unveil computationally efficient methods of embedding logic gates
into granular metamaterials. We proceed with analyzing our findings.

4.1 Relative Independence of AND & AND Vs XOR & AND

Comparing within each valuation method, we find that materials where g1 =
AND, g2 = AND have significantly lower independence than materials where
g1 = XOR, g2 = AND (p < 0.05 for all comparisons). That is, materials with
heterogeneous logic gates display higher independence in all evaluated methods
tested. It is not clear why this is the case. One hypothesis is that in materials
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Fig. 4. Comparison of sample material behavior where g1 = AND, g2 = AND.
This figure compares sample behavior for materials evolved across our four evaluation
methods. The panels on the left side show behavior in the frequency domain, while the
panels on the right side show behavior in the time domain. Each material here has a
perfect independence score of I = 15.

with homogeneous logic gates, each gate might rely on the same physical phe-
nomena to complete its logical function. For example, each logic gate could rely
on constructive interference between the same pair of grains at a certain loca-
tion within the material. Therefore, when the gates are supplied with different
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Fig. 5. Comparison of material configurations. This figure displays configurations
from the four I = 15 materials from each of our evaluation methods both where g1
= AND, g2 = AND (materials with solid outline), and where g1 = XOR, g2 = AND
(materials with dashed outline).

input cases, the internal pathways on which they each rely to complete their
function are polluted by interference from the other gate. Further investigation
is required to understand the relationship between logic gate choice and logical
independence. Further investigation is also required to understand if this behav-
ior is present for other logic gate choices, such as where g1 = XOR and g2 = XOR
or g1 = AND, g2 = NAND. If this finding is ubiquitous across other logic gate
pairings, it would have implications in the application of CGMMs. Specifically,
it would guide CGMM design and implementation such that we would avoid
embedding homogeneous logic gates into a CGMM, in preference for CGMMs
with mixed logic gates.

4.2 Evolved Material Configurations

It is interesting to visually compare the configurations of materials both between
and within each evaluation method. Figure 5 displays the configurations of four
materials with I = 15 independence materials that were evolved using each of
the tested evaluation methods, both where g1 = AND, g2 = AND, and where
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Fig. 6. Physical implementation of a granular logic gate. A) The time domain
displacement of the input grain under each logical input. B) The frequency domain
signal under each logical input. Here, we expect a high power at the driving frequency
for each of the green lines, and a low power at the driving frequency of the blue line. The
observed behavior here is consistent with the expected behavior of an XOR logic gate.
C) This image shows a close-up of our 3-bead system. D) This photograph displays
our entire chair-XOR system.

g1 = XOR, g2 = AND. We encourage the reader to closely examine the configu-
rations of these materials. Interestingly, each of the materials depicted appears to
have distinct grain-mass organizations. There are very few discernible patterns
among the materials. This includes no discernible pattern in the properties of
input grains, output grains, or border grains. This applies to both materials
where here g1 = AND, g2 = AND, and where g1 = XOR, g2 = AND. The
absence of clear patterns in material properties underscores the intricate and
unintuitive relationship between form and function in CGMMs. This diversity
of configuration reveals a breadth of functional material arrangements that can
arise within the design space.

5 Hardware Implementation

To further the physical realizability of CGMMs, we proceed with implement-
ing a simple physical computational granular XOR. We use everyday materials,
including an office chair, guitar strings, adhesive putty, and beads. Our imple-
mentation consists of three grains strung onto parallel guitar strings placed across
the armrests of an office chair. Figure 6C shows a close-up view of the system,
while Fig. 6D shows a photo of the entire chair system. The two outer beads
act as input grains and the center bead acts as an output grain. The grains’
y-locations were adjusted such that the beads were in light contact when at rest.
Their locations in the x-plane were aligned and then maintained by adhesive
putty. In this system, an input of ‘1’ is passed into the top grain as a hand-pluck
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with amplitude ≈ 2.5 cm applied 90◦C to the string, while an input of ‘1’ is
passed into the bottom grain as a hand-pluck with amplitude ≈ 2.5 cm applied
270◦C to the guitar string. This system is designed such that there is destructive
interference from the input grains when the ‘11’ input case is passed into the
system, leading to little movement of the output grain.

To assess the function of this system, we recorded its behavior under the ‘01’,
‘10’, and ‘11’ input cases. The ‘00’ input case is not considered as it is trivial.
The behavior of the output grain was captured on video with a frame rate of
960fps using Super Slo-mo mode on a Galaxy S21 Android phone. Each video
was then processed to extract the displacement of the output grain under each
logical input using trackR [6]. These videos are included in the supplementary
materials. Figure 6A and 6B respectively show the behavior of the output grain
over time, and across frequency. Both of these figures support that our system
exhibits appropriate XOR behavior.

6 Conclusions & Future Work

This study presents scalable methods for evolving independent polycomputa-
tional granular materials without explicitly optimizing for independence. We
report the first discovery of entirely logically independent CGMMs. Notably,
we observed that evolution discovers more independent CGMMs when a mate-
rial has mixed logic gates compared to those with homogeneous gates. How-
ever, the extent to which this trend generalizes to other gate pairings remains
unclear. Resolving this uncertainty will be a focus of future investigations. We
also implement a vibrational XOR gate in hardware. While not AI-designed,
this gate serves as a physical proof-of-concept for computational functionality in
vibrational granular assemblies. Expanding this work to include more complex,
two-dimensional grain structures will be the next step to transferring evolved
designs from simulation to reality.
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